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RESUMO 

A incorporação de modelos de Inteligência Artificial (IA) na saúde promete revolucionar 

o diagnóstico e o tratamento, mas sua natureza como "caixa-preta" representa uma 

barreira crítica para a adoção clínica e a responsabilidade médica. A Inteligência Artificial 

Explicável (XAI) surge como uma resposta a essa barreira, buscando prover transparência 

às decisões algorítmicas. No entanto, a literatura corrente, embora rica em descrever 

métodos de XAI, ainda carece de uma abordagem estruturada sob a ótica da engenharia 

de sistemas. Este artigo avança na discussão ao propor um framework para o ciclo de vida 

de sistemas de XAI, argumentando que a meta não deve ser apenas a "explicabilidade", 

mas a construção de "sistemas de IA confiáveis" (Trustworthy AI). Analisamos a 

taxonomia dos métodos de XAI (intrínsecos e pós-hoc) sob a perspectiva de suas 

implicações de engenharia e propomos um ciclo de vida em quatro fases: (1) Governança 

de Dados e Mitigação de Viés; (2) Verificação e Validação das Explicações; (3) Integração 

Clínica e Fatores Humanos; e (4) Monitoramento Pós-Implementação e Deriva da 

Explicação. Discutimos os desafios e as fronteiras da pesquisa, com ênfase na 

causalidade, escalabilidade e nos marcos regulatórios pertinentes ao contexto brasileiro, 

como a Lei Geral de Proteção de Dados (LGPD). Concluímos que a transição da XAI do 

campo acadêmico para a prática clínica sustentável depende de um paradigma rigoroso 

de engenharia, focado na robustez, validação e confiabilidade do sistema como um todo. 
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ABSTRACT 

The incorporation of Artificial Intelligence (AI) models into healthcare promises to 

revolutionize diagnosis and treatment, but their "black box" nature represents a critical 

barrier to clinical adoption and medical accountability. Explainable Artificial Intelligence 

(XAI) emerges as a response to this barrier, seeking to provide transparency to 

algorithmic decisions. However, the current literature, although rich in describing XAI 

methods, still lacks a structured approach from the perspective of systems engineering. 

This article advances the discussion by proposing a framework for the life cycle of XAI 

systems, arguing that the goal should not be only "explainability", but the construction of 

"trustworthy AI systems". We analyze the taxonomy of XAI methods (intrinsic and post-

hoc) from the perspective of their engineering implications and propose a life cycle in 

four phases: (1) Data Governance and Bias Mitigation; (2) Verification and Validation of 

Explanations; (3) Clinical Integration and Human Factors; and (4) Post-Implementation 

Monitoring and Explanation Drift. We discuss the challenges and frontiers of research, 

with emphasis on causality, scalability, and regulatory frameworks relevant to the 

Brazilian context, such as the General Data Protection Law (LGPD). We conclude that 

the transition of XAI from academia to sustainable clinical practice depends on a rigorous 

engineering paradigm focused on the robustness, validation, and reliability of the system 

as a whole. 

Keywords: Explainable Artificial Intelligence, AI in Healthcare, Systems Engineering, 

Trustworthy AI, Model Validation, Machine Learning. 

 

1. INTRODUÇÃO 

A ascensão do aprendizado de máquina (machine learning, ML) e, em particular, 

do aprendizado profundo (deep learning, DL), inaugurou uma nova era de possibilidades 

na área da saúde. Modelos algorítmicos demonstram performance comparável ou superior 

à de especialistas humanos em tarefas como a análise de imagens médicas, a predição de 

risco e o auxílio ao diagnóstico (Esteva et al., 2019; Rajkomar et al., 2019). No entanto, 

a crescente complexidade desses modelos, frequentemente envolvendo milhões de 

parâmetros, gerou um paradoxo: quanto mais potente o modelo, mais opaco seu processo 

decisório (Burrell, 2016; Lipton, 2018). Essa opacidade, ou o "problema da caixa-preta", 

não é apenas uma curiosidade acadêmica; é uma barreira fundamental à sua adoção clínica 

por razões éticas, legais e de segurança do paciente (Mittelstadt et al., 2019). 

Em resposta, o campo da Inteligência Artificial Explicável (XAI) emergiu com 

o objetivo de tornar as decisões de modelos de IA compreensíveis para os usuários 

humanos (Arrieta et al., 2020). Revisões sistemáticas, como a de Bharati et al. (2022), 

categorizaram exaustivamente os métodos de XAI e suas aplicações, respondendo às 
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perguntas de "por que, como e quando" utilizá-los. Essa base é fundamental, mas, sob a 

ótica da engenharia, a explicabilidade é uma propriedade necessária, porém não 

suficiente. O verdadeiro desafio reside na engenharia de sistemas de IA confiáveis 

(Trustworthy AI), onde a explicação é apenas um dos componentes, ao lado de robustez, 

justiça (fairness), privacidade e governança (Falco & Shneiderman, 2023). 

No contexto brasileiro, a implementação de tais sistemas em uma escala como a 

do Sistema Único de Saúde (SUS) amplifica esses desafios. A heterogeneidade dos dados, 

a necessidade de validação em populações diversas e a conformidade com a Lei Geral de 

Proteção de Dados (LGPD, Lei nº 13.709/2018) exigem uma abordagem que transcenda 

a simples aplicação de uma técnica de XAI a um modelo treinado. 

Este artigo, portanto, propõe uma mudança de paradigma: da busca pela 

"explicação" para a engenharia de "confiabilidade". Argumentamos que a XAI deve ser 

tratada não como um passo final, mas como um processo integrado ao longo de todo o 

ciclo de vida do sistema de IA. Para tanto, apresentamos um framework conceitual de 

engenharia para o desenvolvimento, validação e monitoramento de sistemas de XAI na 

prática clínica, com o objetivo de fomentar uma discussão mais pragmática e alinhada às 

necessidades de implementação no mundo real. 

2. Taxonomia de Engenharia dos Métodos de XAI 

A literatura classifica os métodos de XAI de diversas formas. Do ponto de vista 

da engenharia de sistemas, a distinção mais funcional é entre abordagens ante-hoc 

(intrínsecas) e pós-hoc. 

2.1 Modelos Intrinsecamente Interpretáveis (Ante-hoc) 

Estes são modelos transparentes por design. Incluem algoritmos clássicos como 

regressão linear, árvores de decisão e sistemas baseados em regras (Rudin, 2019). A 

principal vantagem de engenharia é que a explicação é o próprio modelo; não há uma 

camada adicional de aproximação que precise ser validada. Por exemplo, uma árvore de 

decisão para predição de risco cardiovascular oferece um fluxo de regras explícito e 

auditável (Letham et al., 2015). 

O trade-off fundamental, contudo, é entre interpretabilidade e performance. Para 

capturar as relações não-lineares complexas presentes em dados médicos de alta 

dimensão (genômica, imagens), esses modelos podem ser insuficientes, levando a uma 

perda de acurácia preditiva em comparação com abordagens de caixa-preta (Goodman & 



 

 
Premium Handbook Science Technology, v.1, n.1 (2025), p. 16. Licenciado CC BY 4.0.  

 

Flaxman, 2017). A escolha por um modelo intrínseco é, portanto, uma decisão de projeto 

que deve ponderar os requisitos de performance e a criticidade da transparência absoluta. 

2.2 Métodos de Explicação Pós-hoc 

Estes métodos são aplicados a modelos de caixa-preta já treinados, funcionando 

como uma camada de análise para explicar predições individuais ou o comportamento 

global do modelo (Molnar, 2020). São a força motriz da XAI moderna, pois permitem o 

uso de modelos de alta performance (e.g., redes neurais profundas) sem sacrificar 

completamente a interpretabilidade. Do ponto de vista da engenharia, eles se dividem em 

duas classes principais. 

2.2.1 Métodos Agnósticos ao Modelo. Estes métodos tratam o modelo de IA 

como uma caixa-preta, analisando apenas as relações entre entrada e saída. Sua grande 

vantagem de engenharia é a flexibilidade, pois podem ser aplicados a qualquer tipo de 

algoritmo. Os exemplos mais proeminentes são (i) LIME (Local Interpretable Model-

agnostic Explanations), que explica uma predição individual ao treinar um modelo 

interpretável mais simples (e.g., regressão linear) em uma vizinhança local da instância 

de interesse (Ribeiro et al., 2016), e que, apesar de intuitivo, apresenta desafios de 

engenharia relacionados à instabilidade das explicações e à definição do que constitui 

uma "vizinhança local" (Alvarez-Melis & Jaakkola, 2018); e (ii) SHAP (SHapley 

Additive exPlanations), que, baseado na teoria dos jogos cooperativos, atribui a cada 

característica de entrada (feature) um valor que representa sua contribuição para a 

predição, garantindo consistência teórica (Lundberg & Lee, 2017). O SHAP tornou-se um 

padrão na indústria, mas seu custo computacional pode ser proibitivo para modelos muito 

complexos ou para cenários que exigem explicações em tempo real, um requisito comum 

em sistemas de apoio à decisão clínica (Strumbelj & Kononenko, 2014). 

2.2.2 Métodos Específicos ao Modelo. Diferentemente dos agnósticos, estes 

métodos são projetados para classes específicas de modelos (majoritariamente redes 

neurais), aproveitando sua arquitetura interna para gerar explicações. Sua vantagem de 

engenharia é a potencial maior fidelidade ao comportamento do modelo. Exemplos 

incluem (i) Mapas de Ativação (Grad-CAM), que, utilizado em Redes Neurais 

Convolucionais (CNNs), usa os gradientes da última camada convolucional para produzir 

um mapa de calor que destaca as regiões da imagem de entrada mais importantes para a 

decisão (Selvaraju et al., 2017), sendo visualmente poderoso para validar se um modelo 

de radiologia está, de fato, "olhando" para a patologia correta; e (ii) Propagação de 
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Relevância (LRP), que decompõe a predição de uma rede neural, redistribuindo-a em 

cascata reversa até a camada de entrada para indicar a contribuição de cada pixel ou 

feature (Bach et al., 2015). A escolha entre métodos pós-hoc agnósticos e específicos é 

uma decisão de arquitetura. Métodos agnósticos oferecem flexibilidade para 

experimentação com diferentes modelos de IA, enquanto métodos específicos podem 

fornecer explicações mais fiéis, mas atrelam a solução de XAI a uma arquitetura de 

modelo particular. 

 

3. O CICLO DE VIDA DA ENGENHARIA DE SISTEMAS XAI 

A implementação de XAI na prática clínica não pode ser um afterthought. 

Propomos que ela seja integrada em um ciclo de vida de engenharia rigoroso, composto 

por quatro fases interconectadas. 

Fase 1: Governança de Dados e Mitigação de Viés 

A confiança em um sistema de IA começa com a confiança nos dados. 

Explicações geradas a partir de dados com viés (bias) não são apenas inúteis, mas 

perigosas, pois podem criar uma falsa sensação de segurança em uma decisão 

fundamentalmente falha (Obermeyer et al., 2019). A engenharia de um sistema XAI deve, 

portanto, começar com (i) uma análise de viés, auditando sistematicamente os dados de 

treinamento para identificar e mitigar vieses demográficos, socioeconômicos ou de 

subpopulações; (ii) a documentação rigorosa da proveniência, coleta, limpeza e 

limitações dos dados através de Data Sheets for Datasets, seguindo frameworks como o 

proposto por Gebru et al. (2021); e (iii) a garantia de que todo o processo de manipulação 

de dados esteja em conformidade com a LGPD, especialmente no que tange ao tratamento 

de dados sensíveis de saúde. 

Fase 2: Verificação e Validação das Explicações (V&V) 

Uma vez que um método de XAI é implementado, como podemos confiar na 

explicação que ele gera? Esta é uma questão central de engenharia. A fase de V&amp;V 

deve ir além da simples inspeção visual e incorporar métricas quantitativas, como (i) 

Fidelidade (Fidelity), que mede o quão bem a explicação se aproxima do comportamento 

do modelo de caixa-preta; (ii) Robustez (Robustness), que avalia se a explicação se 

mantém estável para pequenas perturbações na entrada; e (iii) Consistência 

(Consistency), que verifica se modelos funcionalmente equivalentes produzem 
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explicações semelhantes para a mesma entrada (Doshi-Velez & Kim, 2017). A validação 

de explicações é um campo ativo de pesquisa, mas é um passo de engenharia não 

negociável para sistemas de missão crítica. 

Fase 3: Integração Clínica e Fatores Humanos 

Uma explicação tecnicamente perfeita é inútil se não for compreensível e 

acionável pelo usuário final — o profissional de saúde. Esta fase envolve a colaboração 

estreita com médicos, enfermeiros e outros especialistas para projetar a interface homem-

máquina (Tonekaboni et al., 2019). Os desafios de engenharia incluem (i) o design da 

interface, questionando como apresentar a explicação de forma a não sobrecarregar o 

usuário e se integrar ao fluxo de trabalho clínico; (ii) a mitigação do viés de automação, 

projetando o sistema para reduzir o risco de que os médicos confiem excessivamente na 

recomendação da IA (Goddard et al., 2012); e (iii) o desenvolvimento de programas de 

treinamento e alfabetização em IA para que os usuários finais compreendam as 

capacidades e as limitações do sistema. 

Fase 4: Monitoramento Pós-Implementação e Deriva da Explicação 

O lançamento de um sistema de XAI não é o fim do ciclo de vida. Modelos de 

IA degradam com o tempo devido à "deriva de conceito" (concept drift), quando a 

distribuição estatística dos dados do mundo real muda (Widmer & Kubat, 1996). Isso 

implica que não apenas a acurácia do modelo pode cair, mas também a validade de suas 

explicações. A engenharia de monitoramento deve prever (i) o monitoramento contínuo 

da performance do modelo; (ii) a detecção de mudanças nas distribuições dos dados de 

entrada; e (iii) o monitoramento da "deriva da explicação" (explanation drift), um 

conceito que propomos para descrever a monitorização da estabilidade e fidelidade das 

explicações ao longo do tempo como um alerta precoce de que o modelo não está mais 

se comportando como esperado. 

 

4. DESAFIOS E FRONTEIRAS DA PESQUISA 

A operacionalização deste ciclo de vida enfrenta desafios significativos que 

definem as fronteiras da pesquisa em XAI aplicada. Tais desafios incluem (i) a distinção 

entre causalidade e correlação, visto que a maioria dos métodos atuais de XAI identifica 

correlações, sendo a integração com inferência causal a próxima fronteira para 

explicações mais robustas (Pearl, 2019); (ii) a escalabilidade e o custo computacional, 
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pois a implementação em larga escala, como no SUS, exige métodos de XAI 

computacionalmente eficientes; (iii) a regulamentação, já que agências como a ANVISA 

estão desenvolvendo diretrizes para software as a medical device (SaMD), e a validação 

rigorosa das explicações será um requisito central (Benjamens et al., 2020); e (iv) a 

necessidade de equipes interdisciplinares, pois o sucesso da engenharia de sistemas XAI 

depende da colaboração entre engenheiros, cientistas de dados, médicos, eticistas e 

reguladores. 

 

5. CONCLUSÃO 

A Inteligência Artificial Explicável (XAI) é indispensável para destravar o 

potencial da IA na saúde. Contudo, para mover a XAI da teoria para a prática clínica 

diária, especialmente em contextos complexos e de larga escala como o brasileiro, é 

preciso adotar uma rigorosa perspectiva de engenharia de sistemas. O foco deve ser 

ampliado da "transparência" de uma única predição para a "confiabilidade" de todo o 

sistema ao longo de seu ciclo de vida. 

Propusemos um framework de engenharia em quatro fases — governança de 

dados, V&amp;V das explicações, integração clínica e monitoramento pós-

implementação — como um roteiro para o desenvolvimento de sistemas de IA confiáveis. 

Acreditamos que a adoção de tal abordagem estruturada é o caminho para garantir que as 

soluções de IA na saúde sejam não apenas inteligentes e precisas, mas também seguras, 

justas e verdadeiramente úteis para médicos e pacientes. O desafio para nós, engenheiros 

e acadêmicos, é construir pontes entre o potencial algorítmico e a realidade clínica, 

transformando a promessa da XAI em um benefício tangível e confiável para a sociedade. 
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