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RESUMO

A incorporacao de modelos de Inteligéncia Artificial (IA) na satide promete revolucionar
o diagndstico e o tratamento, mas sua natureza como '"caixa-preta" representa uma
barreira critica para a adogao clinica e a responsabilidade médica. A Inteligéncia Artificial
Explicavel (XAI) surge como uma resposta a essa barreira, buscando prover transparéncia
as decisdes algoritmicas. No entanto, a literatura corrente, embora rica em descrever
métodos de XAl, ainda carece de uma abordagem estruturada sob a 6tica da engenharia
de sistemas. Este artigo avanga na discussao ao propor um framework para o ciclo de vida
de sistemas de XAI, argumentando que a meta ndo deve ser apenas a "explicabilidade",
mas a construgdo de "sistemas de IA confiaveis" (Trustworthy AI). Analisamos a
taxonomia dos métodos de XAI (intrinsecos e pos-hoc) sob a perspectiva de suas
implicagdes de engenharia e propomos um ciclo de vida em quatro fases: (1) Governanga
de Dados e Mitigacao de Viés; (2) Verificagdo e Validagdo das Explicacdes; (3) Integracao
Clinica e Fatores Humanos; e (4) Monitoramento Pés-Implementagdo e Deriva da
Explicacdo. Discutimos os desafios e as fronteiras da pesquisa, com énfase na
causalidade, escalabilidade e nos marcos regulatorios pertinentes ao contexto brasileiro,
como a Lei Geral de Protecao de Dados (LGPD). Concluimos que a transi¢ao da XAl do
campo académico para a pratica clinica sustentavel depende de um paradigma rigoroso
de engenharia, focado na robustez, validagdo e confiabilidade do sistema como um todo.
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ABSTRACT

The incorporation of Artificial Intelligence (AI) models into healthcare promises to
revolutionize diagnosis and treatment, but their "black box" nature represents a critical
barrier to clinical adoption and medical accountability. Explainable Artificial Intelligence
(XAI) emerges as a response to this barrier, seeking to provide transparency to
algorithmic decisions. However, the current literature, although rich in describing XAI
methods, still lacks a structured approach from the perspective of systems engineering.
This article advances the discussion by proposing a framework for the life cycle of XAl
systems, arguing that the goal should not be only "explainability", but the construction of
"trustworthy Al systems". We analyze the taxonomy of XAl methods (intrinsic and post-
hoc) from the perspective of their engineering implications and propose a life cycle in
four phases: (1) Data Governance and Bias Mitigation; (2) Verification and Validation of
Explanations; (3) Clinical Integration and Human Factors; and (4) Post-Implementation
Monitoring and Explanation Drift. We discuss the challenges and frontiers of research,
with emphasis on causality, scalability, and regulatory frameworks relevant to the
Brazilian context, such as the General Data Protection Law (LGPD). We conclude that
the transition of XAl from academia to sustainable clinical practice depends on a rigorous
engineering paradigm focused on the robustness, validation, and reliability of the system
as a whole.

Keywords: Explainable Artificial Intelligence, Al in Healthcare, Systems Engineering,
Trustworthy Al, Model Validation, Machine Learning.

1. INTRODUCAO

A ascensdo do aprendizado de maquina (machine learning, ML) e, em particular,
do aprendizado profundo (deep learning, DL), inaugurou uma nova era de possibilidades
na area da saude. Modelos algoritmicos demonstram performance comparavel ou superior
a de especialistas humanos em tarefas como a analise de imagens médicas, a predicao de
risco e o auxilio ao diagndstico (Esteva et al., 2019; Rajkomar et al., 2019). No entanto,
a crescente complexidade desses modelos, frequentemente envolvendo milhdes de
parametros, gerou um paradoxo: quanto mais potente o modelo, mais opaco seu processo
decisoério (Burrell, 2016; Lipton, 2018). Essa opacidade, ou o "problema da caixa-preta",
ndo ¢ apenas uma curiosidade académica; € uma barreira fundamental a sua adogao clinica

por razdes é€ticas, legais e de seguranga do paciente (Mittelstadt et al., 2019).

Em resposta, o campo da Inteligéncia Artificial Explicavel (XAI) emergiu com
0 objetivo de tornar as decisdes de modelos de IA compreensiveis para os usudrios
humanos (Arrieta et al., 2020). Revisoes sistematicas, como a de Bharati et al. (2022),

categorizaram exaustivamente os métodos de XAl e suas aplicagdes, respondendo as
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perguntas de "por que, como e quando" utiliza-los. Essa base ¢ fundamental, mas, sob a
Otica da engenharia, a explicabilidade ¢ uma propriedade necessdria, porém ndo
suficiente. O verdadeiro desafio reside na engenharia de sistemas de IA confiaveis
(Trustworthy AI), onde a explicagdo ¢ apenas um dos componentes, ao lado de robustez,

justica (fairness), privacidade e governanca (Falco & Shneiderman, 2023).

No contexto brasileiro, a implementacgao de tais sistemas em uma escala como a
do Sistema Unico de Satde (SUS) amplifica esses desafios. A heterogeneidade dos dados,
a necessidade de valida¢do em populagdes diversas e a conformidade com a Lei Geral de
Protecao de Dados (LGPD, Lei n° 13.709/2018) exigem uma abordagem que transcenda

a simples aplica¢do de uma técnica de XAl a um modelo treinado.

Este artigo, portanto, propde uma mudanca de paradigma: da busca pela
"explicagdo" para a engenharia de "confiabilidade". Argumentamos que a XAl deve ser
tratada ndo como um passo final, mas como um processo integrado ao longo de todo o
ciclo de vida do sistema de IA. Para tanto, apresentamos um framework conceitual de
engenharia para o desenvolvimento, validacdo e monitoramento de sistemas de XAl na
pratica clinica, com o objetivo de fomentar uma discussdo mais pragmatica e alinhada as

necessidades de implementagcdo no mundo real.
2. Taxonomia de Engenharia dos Métodos de XAl

A literatura classifica os métodos de XAl de diversas formas. Do ponto de vista
da engenharia de sistemas, a distingdo mais funcional ¢ entre abordagens ante-hoc

(intrinsecas) e pos-hoc.
2.1 Modelos Intrinsecamente Interpretaveis (Ante-hoc)

Estes sdo modelos transparentes por design. Incluem algoritmos classicos como
regressao linear, arvores de decisdo e sistemas baseados em regras (Rudin, 2019). A
principal vantagem de engenharia ¢ que a explicagdo ¢ o proprio modelo; ndo hd uma
camada adicional de aproximacao que precise ser validada. Por exemplo, uma arvore de
decisdo para predicao de risco cardiovascular oferece um fluxo de regras explicito e

auditavel (Letham et al., 2015).

O trade-off fundamental, contudo, ¢ entre interpretabilidade e performance. Para
capturar as relacdes nado-lineares complexas presentes em dados médicos de alta
dimensdo (gendmica, imagens), esses modelos podem ser insuficientes, levando a uma

perda de acurdicia preditiva em comparagdo com abordagens de caixa-preta (Goodman &
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Flaxman, 2017). A escolha por um modelo intrinseco €, portanto, uma decisdo de projeto

que deve ponderar os requisitos de performance e a criticidade da transparéncia absoluta.
2.2 Métodos de Explica¢cao Pos-hoc

Estes métodos sdo aplicados a modelos de caixa-preta ja treinados, funcionando
como uma camada de andlise para explicar predigdes individuais ou o comportamento
global do modelo (Molnar, 2020). Sdo a for¢a motriz da XAl moderna, pois permitem o
uso de modelos de alta performance (e.g., redes neurais profundas) sem sacrificar
completamente a interpretabilidade. Do ponto de vista da engenharia, eles se dividem em

duas classes principais.

2.2.1 Métodos Agnosticos ao Modelo. Estes métodos tratam o modelo de A
como uma caixa-preta, analisando apenas as relagdes entre entrada e saida. Sua grande
vantagem de engenharia ¢ a flexibilidade, pois podem ser aplicados a qualquer tipo de
algoritmo. Os exemplos mais proeminentes sao (i) LIME (Local Interpretable Model-
agnostic Explanations), que explica uma predi¢do individual ao treinar um modelo
interpretavel mais simples (e.g., regressao linear) em uma vizinhanga local da instancia
de interesse (Ribeiro et al., 2016), e que, apesar de intuitivo, apresenta desafios de
engenharia relacionados a instabilidade das explicacdes e a defini¢do do que constitui
uma "vizinhanga local" (Alvarez-Melis & Jaakkola, 2018); e (ii) SHAP (SHapley
Additive exPlanations), que, baseado na teoria dos jogos cooperativos, atribui a cada
caracteristica de entrada (feature) um valor que representa sua contribuicdo para a
predi¢do, garantindo consisténcia tedrica (Lundberg & Lee, 2017). O SHAP tornou-se um
padrdo na industria, mas seu custo computacional pode ser proibitivo para modelos muito
complexos ou para cenarios que exigem explicagdes em tempo real, um requisito comum

em sistemas de apoio a decisdo clinica (Strumbelj & Kononenko, 2014).

2.2.2 Métodos Especificos ao Modelo. Diferentemente dos agndsticos, estes
métodos sdo projetados para classes especificas de modelos (majoritariamente redes
neurais), aproveitando sua arquitetura interna para gerar explicagcdes. Sua vantagem de
engenharia ¢ a potencial maior fidelidade ao comportamento do modelo. Exemplos
incluem (i) Mapas de Ativacdo (Grad-CAM), que, utilizado em Redes Neurais
Convolucionais (CNNs), usa os gradientes da ultima camada convolucional para produzir
um mapa de calor que destaca as regides da imagem de entrada mais importantes para a
decisdo (Selvaraju et al., 2017), sendo visualmente poderoso para validar se um modelo

de radiologia esta, de fato, "olhando" para a patologia correta; e (ii) Propagacao de
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Relevancia (LRP), que decompde a predigdo de uma rede neural, redistribuindo-a em
cascata reversa até a camada de entrada para indicar a contribuicdo de cada pixel ou
feature (Bach et al., 2015). A escolha entre métodos pds-hoc agndsticos e especificos €
uma decisdo de arquitetura. Métodos agnosticos oferecem flexibilidade para
experimentacdo com diferentes modelos de 1A, enquanto métodos especificos podem
fornecer explicagdes mais fiéis, mas atrelam a solucdo de XAI a uma arquitetura de

modelo particular.

3. O CICLO DE VIDA DA ENGENHARIA DE SISTEMAS XAI

A implementagdo de XAI na pratica clinica ndo pode ser um afterthought.
Propomos que ela seja integrada em um ciclo de vida de engenharia rigoroso, composto

por quatro fases interconectadas.
Fase 1: Governanca de Dados e Mitigacio de Viés

A confianga em um sistema de IA comeg¢a com a confianga nos dados.
Explicacdes geradas a partir de dados com viés (bias) ndo sdo apenas inuteis, mas
perigosas, pois podem criar uma falsa sensa¢do de seguranca em uma decisdo
fundamentalmente falha (Obermeyer et al., 2019). A engenharia de um sistema XAl deve,
portanto, comegar com (i) uma andlise de viés, auditando sistematicamente os dados de
treinamento para identificar e mitigar vieses demograficos, socioecondmicos ou de
subpopulagdes; (ii) a documentagdo rigorosa da proveniéncia, coleta, limpeza e
limitagdes dos dados através de Data Sheets for Datasets, seguindo frameworks como o
proposto por Gebru et al. (2021); e (iii) a garantia de que todo o processo de manipulacao
de dados esteja em conformidade com a LGPD, especialmente no que tange ao tratamento

de dados sensiveis de saude.
Fase 2: Verificacido e Validacdo das Explicacoes (V&V)

Uma vez que um método de XAI ¢ implementado, como podemos confiar na
explicacdo que ele gera? Esta ¢ uma questdo central de engenharia. A fase de V&amp;V
deve ir além da simples inspe¢do visual e incorporar métricas quantitativas, como (i)
Fidelidade (Fidelity), que mede o quao bem a explicacdo se aproxima do comportamento
do modelo de caixa-preta; (ii) Robustez (Robustness), que avalia se a explicagdo se
mantém estavel para pequenas perturbacdes na entrada; e (iii)) Consisténcia

(Consistency), que verifica se modelos funcionalmente equivalentes produzem
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explicacdes semelhantes para a mesma entrada (Doshi-Velez & Kim, 2017). A validagao
de explicacdes ¢ um campo ativo de pesquisa, mas ¢ um passo de engenharia nio

negociavel para sistemas de missdo critica.
Fase 3: Integraciao Clinica e Fatores Humanos

Uma explicagdo tecnicamente perfeita ¢ inutil se ndo for compreensivel e
acionavel pelo usuario final — o profissional de satide. Esta fase envolve a colaboragao
estreita com médicos, enfermeiros e outros especialistas para projetar a interface homem-
maquina (Tonekaboni et al., 2019). Os desafios de engenharia incluem (i) o design da
interface, questionando como apresentar a explicagdo de forma a ndo sobrecarregar o
usuario e se integrar ao fluxo de trabalho clinico; (ii) a mitiga¢do do viés de automagao,
projetando o sistema para reduzir o risco de que os médicos confiem excessivamente na
recomendacao da IA (Goddard et al., 2012); e (iii) o desenvolvimento de programas de
treinamento e alfabetizagdo em IA para que os usudrios finais compreendam as

capacidades e as limitagdes do sistema.
Fase 4: Monitoramento Pos-Implementacio e Deriva da Explicacao

O langamento de um sistema de XAl ndo ¢ o fim do ciclo de vida. Modelos de
IA degradam com o tempo devido a "deriva de conceito" (concept drift), quando a
distribuicdo estatistica dos dados do mundo real muda (Widmer & Kubat, 1996). Isso
implica que ndo apenas a acurdcia do modelo pode cair, mas também a validade de suas
explicagdes. A engenharia de monitoramento deve prever (i) o monitoramento continuo
da performance do modelo; (ii) a detec¢do de mudangas nas distribui¢cdes dos dados de
entrada; e (iii) o monitoramento da "deriva da explicacdo" (explanation drift), um
conceito que propomos para descrever a monitorizagdo da estabilidade e fidelidade das

explicagdes ao longo do tempo como um alerta precoce de que o modelo ndo estd mais

se comportando como esperado.

4. DESAFIOS E FRONTEIRAS DA PESQUISA

A operacionalizagdo deste ciclo de vida enfrenta desafios significativos que
definem as fronteiras da pesquisa em XAl aplicada. Tais desafios incluem (i) a distingao
entre causalidade e correlacdo, visto que a maioria dos métodos atuais de XAl identifica
correlagdes, sendo a integracdo com inferéncia causal a proxima fronteira para

explicacdes mais robustas (Pearl, 2019); (i1) a escalabilidade e o custo computacional,
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pois a implementagdo em larga escala, como no SUS, exige métodos de XAl
computacionalmente eficientes; (iii) a regulamentacao, ja que agéncias como a ANVISA
estdo desenvolvendo diretrizes para software as a medical device (SaMD), e a validagdo
rigorosa das explicacdes serd um requisito central (Benjamens et al., 2020); e (iv) a
necessidade de equipes interdisciplinares, pois o sucesso da engenharia de sistemas XAl
depende da colaboragdo entre engenheiros, cientistas de dados, médicos, eticistas e

reguladores.

5. CONCLUSAO

A Inteligéncia Artificial Explicavel (XAI) ¢ indispensavel para destravar o
potencial da IA na saude. Contudo, para mover a XAl da teoria para a pratica clinica
diaria, especialmente em contextos complexos e de larga escala como o brasileiro, ¢
preciso adotar uma rigorosa perspectiva de engenharia de sistemas. O foco deve ser
ampliado da "transparéncia" de uma tUnica predi¢cdo para a "confiabilidade" de todo o

sistema ao longo de seu ciclo de vida.

Propusemos um framework de engenharia em quatro fases — governanca de
dados, V&amp;V das explicagdes, integracdo clinica e monitoramento pos-
implementagdo — como um roteiro para o desenvolvimento de sistemas de [A confidveis.
Acreditamos que a adocdo de tal abordagem estruturada ¢ o caminho para garantir que as
solucdes de IA na saude sejam ndo apenas inteligentes e precisas, mas também seguras,
justas e verdadeiramente uteis para médicos e pacientes. O desafio para nds, engenheiros
e académicos, € construir pontes entre o potencial algoritmico e a realidade clinica,

transformando a promessa da XAl em um beneficio tangivel e confiavel para a sociedade.
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